On mean ergodic convergence in the Calkin algebras
نویسندگان
چکیده
منابع مشابه
On Mean Ergodic Convergence in the Calkin Algebras
In this paper, we give a geometric characterization of mean ergodic convergence in the Calkin algebras for Banach spaces that have the bounded compact approximation property.
متن کاملOn The Mean Convergence of Biharmonic Functions
Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...
متن کاملSome Calkin algebras have outer automorphisms
We consider various quotients of the C*-algebra of bounded operators on a nonseparable Hilbert space, and prove in some cases that, consistently, there are many outer automorphisms.
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولOn the Mean Ergodic Theorem for Subsequences
With these assumptions we have T defined for every integer n as a 1-1, onto, bimeasurable transformation. Henceforth we shall assume that every set considered is measurable, i.e. an element of a. We shall say that P is invariant if P(A) =P(TA) for every set A, P is ergodic if P is invariant and if P(U^L_oo TA) = 1 for every set A for which P(A) > 0 , and finally P is strongly mixing if P is inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2015
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2015-12432-x